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Abstract

This paper shows a method to estimate the orientation of a rectangle in 3D world based
exclusively on its 2D projection.

1 notations

X

As shown in the picture above. O is the optical center of the camera and Z is its optical axis.

(O — zyz) is a 3D orthogonal coordinate system and (Op — uv) is the image plane with OO as its
image center.

The rectangle in 3D world has four points:
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Its projection on the image plane also has four points:
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What we want to know is the normal vector of plane(P; — Py):
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We are also going to use the notations of some angles:
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2 things that we have already known

2.1 the height and width of the photo(in pixel)
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2.2 the image center OO which passes 2
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2.3 the photo fits the Pinhole Camera Model
for each point P = (x,y, z) and its projection PP = (u,v), it holds true that:

(1)-(%)

where f is the focal length of the camera

2.4 the focal length of the camera (pixel/millimeter)
f =977 (8)

2.5 angles of a rectangle are all right angles
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2.6 Claim 1

for any rectangles Rect! = (Pl P} P; P}) in 3D world, there must exist a rectangle Rect® =
(P} P3 P? P?) sharing the same normal vector V; as well as the same projection on the image
plane with Rect! and it also satisfy that the depth of the first point equal 3000: P2 = (2% y? 3000.0).



this claim ensure us to take any constant as the value of 21, all of which will lead to the same

result of 171 .

Proof:
let

then
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is the rectangle we are seeking.

3 solve the problem
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As a result of claim 1(2.6), we could simply let z; = 3000.0 as our first step.

Then we temporarily treat zo as a variable.

Once we get the value of z9, we can calculate P P2
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Then, we can calculate their space vector
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Next, we calculate the plane Planes which is perpendicular to P} P> and passes Ps.
(using ax+by+cz=d formed equation)
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For Pg, whose projection is PPg, it holds true that:
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Because /P1P2P3 = 7, P3 must lie on Planes, together with(15)(16)we can calculate the value
of z3:
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(w2 — 1) * 50 + (y2 — y1) * P50 + (22 — 21)
According to (16) we can calculate the value of P3
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Through the same way as (15)(16)(17)(18), we can calculate the value of Py
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Now, we are going to calculate the value of zs.

Recall that /A3 = /Ay = 7, we can write down our object function, and it holds true that the
most likely value of zy is the value which can make the object function as close to 0 as possible
(ideally it should equal 0 but in real world, it can’t reach 0 due to the limited resolution of photos.)
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Since our object function has only one variable (22), there are dozens of methods to find its
minimal, I tried particle swarm optimization (PSO), and it worded well.

Once we get the value of z5, we get the value of P, — Py, with which, we can calculate the value
of V easily.



